Cell stress molecules in the skeletal muscle of GNE myopathy

نویسندگان

  • Charlotte Fischer
  • Konstanze Kleinschnitz
  • Arne Wrede
  • Ingrid Muth
  • Niels Kruse
  • Ichizo Nishino
  • Jens Schmidt
چکیده

BACKGROUND Mutations of the UDP-N-acetylglucosamine-2-epimerase/N-acetylmannosamine-kinase (GNE)-gene are causally related to GNE myopathy. Yet, underlying pathomechanisms of muscle fibre damage have remained elusive. In sporadic inclusion body myositis (sIBM), the pro-inflammatory cell-stress mediators αB-crystallin and inducible nitric oxide synthase (iNOS) are crucial markers of the disease pathology. METHODS 10 muscle biopsies from GNE myopathy patients were analyzed for mRNA-expression of markers of cell-stress, inflammation and β-amyloid and compared to non-myopathic controls. Using double-labeling immunohistochemistry, serial sections of skeletal muscle biopsies were stained for amyloid precursor protein (APP), major histocompatibility complex (MHC)-I, αB-crystallin, neural cell adhesion molecule (NCAM), interleukin (IL)-1β, β-amyloid, iNOS, and phosphorylated neurofilament (P-neurofilament) as well as hematoxylin/eosin histochemistry. Corresponding areas of all biopsies with a total of 2,817 muscle fibres were quantitatively assessed for all markers. RESULTS mRNA-expression of APP, NCAM, iNOS, TNF-α and TGF-β was higher in GNE myopathy compared to controls, yet this was not statistically significant. The mRNA-expression of APP and αB-crystallin significantly correlated with the expression of several pro-inflammatory and cell-stress-associated markers as NCAM, IL-1β, TGF-β, CCL-3, and CCL4. By immunohistochemistry, αB-crystallin and iNOS were co-upregulated and the number of fibres positive for αB-crystallin, NCAM, MHC-I and iNOS significantly correlated with each other. A large fraction of fibres positive for αB-crystallin were double positive for iNOS and vice-versa. Moreover, several fibres with structural abnormalities were positive for αB-crystallin and iNOS. Notably, particularly normal appearing fibres displayed an overexpression of these molecules. CONCLUSIONS The cell-stress molecules αB-crystallin and iNOS are overexpressed in GNE myopathy muscle and may identify early disease mechanisms. The data help to better understand the pathology of GNE myopathy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

UDP-N-Acetylglucosamine 2-Epimerase/N-Acetylmannosamine Kinase (GNE) Binds to Alpha-Actinin 1: Novel Pathways in Skeletal Muscle?

BACKGROUND Hereditary inclusion body myopathy (HIBM) is a rare neuromuscular disorder caused by mutations in GNE, the key enzyme in the biosynthetic pathway of sialic acid. While the mechanism leading from GNE mutations to the HIBM phenotype is not yet understood, we searched for proteins potentially interacting with GNE, which could give some insights about novel putative biological functions ...

متن کامل

Increased amyloid β-peptide uptake in skeletal muscle is induced by hyposialylation and may account for apoptosis in GNE myopathy

GNE myopathy is an autosomal recessive muscular disorder of young adults characterized by progressive skeletal muscle weakness and wasting. It is caused by a mutation in the UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) gene, which encodes a key enzyme in sialic acid biosynthesis. The mutated hypofunctional GNE is associated with intracellular accumulation of amyloid β-pe...

متن کامل

Gne depletion during zebrafish development impairs skeletal muscle structure and function.

GNE Myopathy is a rare recessively inherited neuromuscular disorder caused by mutations in the GNE gene, which codes for the key enzyme in the metabolic pathway of sialic acid synthesis. The process by which GNE mutations lead to myopathy is not well understood. By in situ hybridization and gne promoter-driven fluorescent transgenic fish generation, we have characterized the spatiotemporal expr...

متن کامل

Identification of an Alu element‐mediated deletion in the promoter region of GNE in siblings with GNE myopathy

BACKGROUND GNE myopathy is a rare genetic disease characterized by progressive muscle atrophy and weakness. It is caused by biallelic mutations in the GNE gene that encodes for the bifunctional enzyme, uridine diphosphate (UDP)-N-acetylglucosamine (GlcNAc) 2-epimerase/N-acetylmannosamine (ManNAc) kinase. Typical characteristics of GNE myopathy include progressive myopathy, first involving anter...

متن کامل

NCAM is hyposialylated in hereditary inclusion body myopathy due to GNE mutations.

The authors found that the neural cell adhesion molecule (NCAM) is hyposialylated in hereditary inclusion body myopathy (HIBM) muscle, as suggested by its decreased molecular weight by Western blot. This abnormality represented the only pathologic feature differentiating HIBM due to GNE mutations from other myopathies with similar clinical and pathologic characteristics. If further confirmed in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2013